it

CrowdSec

Crowdsec
Application Security

Open WAF Day Barcelona

Actionable Collective Threat Intelligence

Whatis Crowdsec

Community-oriented project

Analyzes your logs (or HTTP request) in real time

Automatically shares information about attacks you detect

You receive a blocklist of the most aggressive IPs in our network

CROWDSEC
CENTRAL API

~ 7 CROWDSEC SECURITY ENGINE
1

ONLINE CONSOLE

o = VIEW ALERTS IN THE CONSOLE
A e & i
AN o S '
,;\—:“" S '
1
[
"\ﬁ"
V-
'
' & s
| DETECTS UNWANTED BEHAVIORS AND BLOCKS BAD R
: 1Ps
'
~
~
~
~
~

\% REMEDIATION
S ;

S

“Any security
software that
can do pattern

matching will be
used as a poor

man’s WAF at
some point.”

Why did we implement a WAF

Majority of our users are only
exposing/protecting HTTP servers
At the time, modsecurity was EOL with no
clear path for the future
Some of them were using crowdsec as a
WAF
- But because we read logs, the block only
happens after the request
- Logs only give a very incomplete picture
of the request

Why Coraza

We did not want to roll our own WAF engine
- Already did that in the past (naxsi)

Established project

Implemented in Go

modsecurity rules compatibility (although not 100%)
- CRS compatibility

Architecture

i [
I

21
Y VY

CROWDSEC SECURITY
ENGINE

iﬁi Our Approach

- CRS handles the generic detection
- We are focusing on virtual patching rules
- We aim for the setup to be as simple as possible
- Seclang is hard, hide it as much as possible from the user

‘iﬁﬁ Extending Coraza capabilities

- Out-Of-Band evaluation
- Behavioral detection
- Easier runtime configuration with hooks

iﬁ Extending Coraza capabilities : Out of band evaluation

- Testing a new rule directly in production

- Expensive rules

- Detect repetitive actions (eg, scrapping)

- We provide CRS as out-of-band by default:
- Allows to use them on any website without configuration
- But will not block any requests on its own

I incoming http
request

Lcrowdsec internal event=—m=

iﬁ Extending Coraza capabilities : Integration with crowdsec

- When a rule is matched:
- A crowdsec event is generated
- The event goes through the parsers/scenarios pipeline
- Allow to take decisions upon out-of-band matches
- Allow to take long term decisions against repeating offenders

type: leaky

format: 3.0

name: crowdsecurity/appsec-vpatch

description: "Identify attacks flagged by CrowdSec AppSec"

See appsec-native.yaml for reasons why we created a negative startsWith here, we want to ignore
filter: "evt.Meta.log_type == 'appsec-block' && evt.Meta.rule_name not startswWith 'native_rule'"
distinct: evt.Meta.rule_name

leakspeed: "60s"

capacity: 1

groupby: evt.Meta.source_ip

blackhole: 1m 5

‘iﬁﬁ Extending Coraza capabilities: hooks

- Allow for runtime configuration
- Think "SecRuleUpdateByXXX", "SecRuleRemoveByXXX" but more flexible

iﬁi’ Extending Coraza capabilities: on_load

- Executed during coraza initialization
- Can be used to globally disable rules (SecRuleRemoveByXXX" alternative)
- Set a specific remediation (ban or captcha) globally

name: crowdsecurity/my-appsec-config
default remediation: ban

tabandbriles:

- crowdsecurity/base-config

- crowdsecurity/vpatch-*
on load:

= apply:

- RemoveInBandRuleByName ("my rule")

— SetRemediationByTag (Ymy tag®, *captcha')

iﬁi’ Extending Coraza capabilities: pre_eval

- Executed before the request is passed to coraza
- Can be used to disable rules based on the client request

- Set a specific remediation (ban or captcha) based on the request
- Full HTTP request is available

name: crowdsecurity/my-appsec-config
default remediation: ban

inband rules:

- crowdsecurity/base-config

- crowdsecurity/vpatch-*

Preleveals
- filter: IsInBand == true && reqg.RemoteAddr == "192.168.1.1"
apply:
- RemoveInBandRuleByName ("my rule")

iﬁi’ Extending Coraza capabilities: post_eval

- Executed after coraza returns

- Intended for debugging or threat hunting
- Can dump the full request to disk

- Has access to the request for filtering

name: crowdsecurity/my-appsec-config
defaulcl renediation: barn

inband rules:

- crowdsecurity/base-config

- crowdsecurity/vpatch-*
pest eval:

— filter: IsInBand == true

apply:
- DumpRequest () .NoFilters () .WithBody () .ToJSON ()

iﬁi’ Extending Coraza capabilities: on_match

- Only called if a request has matched

- Has access to the full request

- Last chance to change the remediation

- Can prevent an event (or alert) from being created

name: crowdsecurity/my-appsec-config
default remediation: ban

inband rules:

- crowdsecurity/base-config

- crowdsecurity/vpatch-*

on_match:

- filter: IsInBand == true && reqg.RemoteAddr == "192.168.1.1"
apply:
- CancelAlert ()
- CancelEvent ()
- filter: |
any (evt.Appsec.MatchedRules, #.name == "crowdsecurity/vpatch-env-access") and
reqg.RemoteAddr = "192.168.1.1"
apply:

- SetRemediation ("allow")
- filter: evt.Appsec.MatchedRules.GetURI () contains "/foobar/"
apply:
- SetRemediation("allow")

iﬁi’ Custom rules format

rules:
- and:
- zones:
- URI
transform:
- lowercase
match:
type: endsWith
value: /wp-admin/admin-ajax.php
- zones:
- ARGS
variables:
- action
match:
type: equals
value: duplicator_download
- zones:
- ARGS
variables:
- file
match:
type: contains

value: "“.."

Seclang can be very terse

Lots of gotchas if you are not familiar with it
Temporary solution

End goal is ‘req.URI endsWith
"/wp-admin/admin-ajax.php" &&
reqg.args.action == "duplicator_download" &&

.."in req.args.file’

T

Custom rules format

SecRule REQUEST_FILENAME "@endsWith /wp-admin/admin-ajax.php"
"id:100238081,phase:2,deny,log,msg:'crowdsecurity/vpatch-CVE-2020-11738',tag:'crowdsec-cr
owdsecurity/vpatch-CVE-2020-11738',t:lowercase,chain”

SecRule ARGS_GET:action "@streq duplicator_download"
"id:90315028,phase:2,deny,log,msg:'crowdsecurity/vpatch-CVE-2020-11738',tag:'crowdsec-cro

wdsecurity/vpatch-CVE-2020-11738',chain”

SecRule ARGS_GET:file "@contains .."
"id:956980145,phase:2,deny,log,msg:'crowdsecurity/vpatch-CVE-2020-11738',tag:'crowdsec-cr
owdsecurity/vpatch-CVE-2020-11738"

iﬁi Testing

- Two main goals:
- Make contributing new rules easier:
- Anybody can submit new rules for integration, so we need to have
an easy way to test them (for correctness and false positives)
- Make reviewing (and understanding them) rules easier

Testing for true positives

Make sure a new rule blocks exploitation attempts
- Use existing exploits
- Reverse the patch to write it
Based on crowdsec existing testing framework
Use nuclei templates to describe HTTP requests
Test for behaviour, not internal state
End-to-end test:
- Client -> web server -> crowdsec

ﬁﬁﬁ Testing for true positives

appsec-rules:
- ./appsec-rules/crowdsecurity/base-config.yaml

- ./appsec-rules/crowdsecurity/vpatch-CVE-2024-8963.yaml
nuclei_template: test-CVE-2024-8963.yaml

Testing for true positives

id: test-CVE-2024-8963
info:
name: test-CVE-2024-8963
author: crowdsec
severity: info
description: test-CVE-2024-8963 testing
tags: appsec-testing
http:
- raw:
-
GET /client/index.php%3F.php/gsb/users.php HTTP/1.1
Host: {{Hostname}}
Content-Type: application/x-www-form-urlencoded

cookie-reuse: true
matchers:
- type: dsl
condition: and
dstl:
- "status_code_1 == 403"

Testing for false positives

Make sure a new rule will not trigger false positives
Finding a good dataset of legitimate queries is hard !
- You can either build your own (very time consuming)
- Or try to find an existing one
Settled on open-appsec legitimate queries dataset
- Contains about 1 millions HTTP request made on 185 websites
Cl job spawns nginx + crowdsec and replay all the requests

iﬁi Community

- ~100k active crowdsec installations
- ~3.5k WAF users
- One installation can cover a lot of websites

—O
—O

Most reported virtual patching rules

total_signals scenario total_ips
976,196 G crowdsecurity/vpatch-env-access 16,950
473,228 ammm crowdsecurity/vpatch-git-config 13,024
56,598 crowdsecurity/vpatch-symfony-profiler 3,729

36,853 crowdsecurity/vpatch-laravel-debug-mode 2,796

63,294 crowdsecurity/vpatch-CVE-2017-9841 1,464

3,277 crowdsecurity/vpatch-CVE-2022-41082 1,121

10,148 crowdsecurity/vpatch-CVE-2024-4577 864

1,846 crowdsecurity/vpatch-CVE-2018-20062

1,133 crowdsecurity/vpatch-CVE-2023-23752

811 crowdsecurity/vpatch-CVE-2022-35914

—O

—O

Most reported CRS rules

606,619

56,374

89,669

69,266

60,786

62,714

68,061

72,842

27,672

43,789

total signals

930130

920350

942100

920440

953100

920420

932235

933150

941100

941160

total_ips

7,124

1,898

1,875

1,556

1,420

1,392

1,337

1,193

1,096

969

iﬁﬁ Bot Classification

- When a request is blocked, JA4H hash is computed

- Most bots don't even bother to properly impersonate a web browser
- They might have the proper UA
- But no accept-language, send very little headers, ...

JA4H: HTTP Client Fingerprint

HTTP Method, GET = “ge”, PUT = “pu”, POST = “po”, etc
HTTP Version, 2.0 =“20", 1.1 = “11"

Cookie, if there's a Cookie “c”, if no Cookie “n”

Referer, if there's a Referer “r” if no Referer “n”

Number of HTTP Headers (ignoring Cookie and Referer)
First 4 characters of primary Accept-Language

(0000 if no Accept-Language)

e & o 0 0 o

JA4H=ge20cril3enus 974ebe531c03 b66fa821d02c e97928733c74

JA4H_a JA4H_b JA4H ¢ JA4H d

e Truncated SHA256 hash of Headers, in the order they appear
e Truncated SHA256 hash of Cookie Fields, sorted
e Truncated SHA256 hash of Cookie Fields + Values, sorted

iﬁiﬁ What's next

- Automate rule creation
- PoC for now, we had great success using an LLM to automatically
generate a virtual-patching rule from an exploit
- OpenAPI schema validation
- Goes further than just JSON schema validation

i

CrowdSec Crowdsec Documentation:
WAF Documentation:
Discord:

Rules:

https://docs.crowdsec.net/
https://docs.crowdsec.net/docs/next/appsec/intro
https://discord.com/invite/crowdsec
https://github.com/crowdsecurity/hub/tree/master/appsec-rules/crowdsecurity
https://github.com/crowdsecurity/hub/tree/master/appsec-rules/crowdsecurity

