
Crowdsec
Application Security

Open WAF Day Barcelona

Actionable Collective Threat Intelligence



- Community-oriented project
- Analyzes your logs (or HTTP request) in real time
- Automatically shares information about attacks you detect
- You receive a blocklist of the most aggressive IPs in our network

What is Crowdsec



- Majority of our users are only 
exposing/protecting HTTP servers

- At the time, modsecurity was EOL with no 
clear path for the future

- Some of them were using crowdsec as a 
WAF

- But because we read logs, the block only 
happens after the request

- Logs only give a very incomplete picture 
of the request

Why did we implement a WAF



- We did not want to roll our own WAF engine
- Already did that in the past (naxsi)

- Established project
- Implemented in Go
- modsecurity rules compatibility (although not 100%)

- CRS compatibility

Why Coraza



Architecture



- CRS handles the generic detection
- We are focusing on virtual patching rules

- We aim for the setup to be as simple as possible
- Seclang is hard, hide it as much as possible from the user

Our Approach



- Out-Of-Band evaluation
- Behavioral detection
- Easier runtime configuration with hooks

Extending Coraza capabilities



- Testing a new rule directly in production
- Expensive rules
- Detect repetitive actions (eg, scrapping)
- We provide CRS as out-of-band by default:

- Allows to use them on any website without configuration
- But will not block any requests on its own 

Extending Coraza capabilities : Out of band evaluation



- When a rule is matched:
- A crowdsec event is generated
- The event goes through the parsers/scenarios pipeline
- Allow to take decisions upon out-of-band matches
- Allow to take long term decisions against repeating offenders

Extending Coraza capabilities : Integration with crowdsec



- Allow for runtime configuration
- Think `SecRuleUpdateByXXX`, `SecRuleRemoveByXXX` but more flexible

Extending Coraza capabilities: hooks



- Executed during coraza initialization
- Can be used to globally disable rules (`SecRuleRemoveByXXX` alternative)
- Set a specific remediation (ban or captcha) globally

Extending Coraza capabilities: on_load



- Executed before the request is passed to coraza
- Can be used to disable rules based on the client request
- Set a specific remediation (ban or captcha) based on the request
- Full HTTP request is available

Extending Coraza capabilities: pre_eval



- Executed after coraza returns
- Intended for debugging or threat hunting
- Can dump the full request to disk
- Has access to the request for filtering

Extending Coraza capabilities: post_eval



- Only called if a request has matched
- Has access to the full request
- Last chance to change the remediation
- Can prevent an event (or alert) from being created

Extending Coraza capabilities: on_match



- Seclang can be very terse
- Lots of gotchas if you are not familiar with it
- Temporary solution
- End goal is `req.URI endsWith 

"/wp-admin/admin-ajax.php" && 
req.args.action == "duplicator_download" && 
".." in req.args.file`

Custom rules format



Custom rules format

SecRule REQUEST_FILENAME "@endsWith /wp-admin/admin-ajax.php" 
"id:100238081,phase:2,deny,log,msg:'crowdsecurity/vpatch-CVE-2020-11738',tag:'crowdsec-cr
owdsecurity/vpatch-CVE-2020-11738',t:lowercase,chain"
SecRule ARGS_GET:action "@streq duplicator_download" 
"id:90315028,phase:2,deny,log,msg:'crowdsecurity/vpatch-CVE-2020-11738',tag:'crowdsec-cro
wdsecurity/vpatch-CVE-2020-11738',chain"
SecRule ARGS_GET:file "@contains .." 
"id:956980145,phase:2,deny,log,msg:'crowdsecurity/vpatch-CVE-2020-11738',tag:'crowdsec-cr
owdsecurity/vpatch-CVE-2020-11738'"



- Two main goals:
- Make contributing new rules easier:

- Anybody can submit new rules for integration, so we need to have 
an easy way to test them (for correctness and false positives)

- Make reviewing (and understanding them) rules easier 

Testing



- Make sure a new rule blocks exploitation attempts
- Use existing exploits
- Reverse the patch to write it

- Based on crowdsec existing testing framework
- Use nuclei templates to describe HTTP requests
- Test for behaviour, not internal state
- End-to-end test:

- Client -> web server -> crowdsec

Testing for true positives



Testing for true positives



Testing for true positives



- Make sure a new rule will not trigger false positives
- Finding a good dataset of legitimate queries is hard !

- You can either build your own (very time consuming)
- Or try to find an existing one

- Settled on open-appsec legitimate queries dataset
- Contains about 1 millions HTTP request made on 185 websites

- CI job spawns nginx + crowdsec and replay all the requests

Testing for false positives



- ~100k active crowdsec installations
- ~3.5k WAF users
- One installation can cover a lot of websites

Community



Most reported virtual patching rules



Most reported CRS rules



- When a request is blocked, JA4H hash is computed
- Most bots don't even bother to properly impersonate a web browser

- They might have the proper UA
- But no accept-language, send very little headers, …

Bot Classification



- Automate rule creation
- PoC for now, we had great success using an LLM to automatically 

generate a virtual-patching rule from an exploit
- OpenAPI schema validation

- Goes further than just JSON schema validation

What's next



Crowdsec Documentation: https://docs.crowdsec.net/

WAF Documentation: https://docs.crowdsec.net/docs/next/appsec/intro

Discord: https://discord.com/invite/crowdsec

Rules:

https://github.com/crowdsecurity/hub/tree/master/appsec-rules/crowdsec
urity

https://docs.crowdsec.net/
https://docs.crowdsec.net/docs/next/appsec/intro
https://discord.com/invite/crowdsec
https://github.com/crowdsecurity/hub/tree/master/appsec-rules/crowdsecurity
https://github.com/crowdsecurity/hub/tree/master/appsec-rules/crowdsecurity

