Improving Regular Expressions

Soujanya Namburi
Senior Security Research Engineer -
Harness io

Regex Before

PCRE, Perl, Java regex
Backtracking

Legacy WAFs, grep-like tools
NFAs

Regexes now

RE2, Hyperscan, Rust, RE-flex
Subset (DFA-compatible only)
WAFs, DPI, high-perf matching

google/re2

RE2 is a fast, safe, thread-friendly alternative to
backtracking regular expression engines like those
used in PCRE, Perl, and Python....

A 56 @ 24 vr 9k T 1k (@)
Contributors Used by Stars Forks)

intel/hyperscan :
mevhypersean intel

o~
o

How PCRE works

Execution: Recursive backtracking

To match, PCRE tries paths depth-first, trying alternatives sequentially
If one path fails, it backtracks to try other branches

Backreferences and advanced features make the automaton
nondeterministic beyond classical NFAs

How RE2 works

Regex - DFA/NFA without backtracking

RE2 converts regex to an optimized Deterministic Finite Automaton
(DFA) or sometimes a hybrid with NFA

It expands all nondeterminism upfront by computing sets of NFA
states (powerset construction)

No backtracking is involved during matching

REDOS!

Relies on backtracking regex engines (e.g., PCRE)
Malicious input forces the engine to explore exponential possibilities
WAF or backend becomes unresponsive or crashes
Bad regex:
o “*only.*"

N

—_

O 0O O 0O 0O o O O O

at+)+$

[a][a][a][a]
[a][a][aa]
[a][aa][a]
[aal[a][a]
[a][aaa]
[aa][aa]
[aaa][a]
[@aaaa]

REDOS!

Better regex

Reduce ambiguity - (abc|a) - a(bc)?
Avoid ambiguous branches, (a|aa)*)

Try to use anchors if possible

Avoid (a|blc) = use [abc]

Avoid Nested Quantifiers: (a+)+ - aa*b

@ ‘b" — line feed (0x0A) -@

“g”

What IDFs did before

e popular IDSes like Snort and Suricata do a prefilter based regex
o Specify a string pattern per regex
o Find words
o Run if found

Optimisations

o JIT:
e Use the prefiltering as part of the regex match
o Compiles all your regular expressions into a single, unified
automaton.
o Converts regex patterns into hybrid automata combining:
m Deterministic Finite Automata (DFA)
m Nondeterministic Finite Automata (NFA)
m Bit-parallel (SIMD) engines
o [FA_n str_n FA_{n-1} str_{n-1} ... str_2 FA_1 str_1 FA_O/

Why can't we use it?

e Designed for hundreds or thousands of simultaneous patterns (e.g.,
IDS, WAF)

e Rewrite the architecture for it to work on 30 percent of the machines

e Needs CPU SIMD support and sufficient memory

The future

e Fully adaptable engine

https://qithub.com/RadhiFadlillah/go-regex-benchmark

e https://rust-leipzig.qgithub.io/reqex/2017/03/28/comparison-of-regex-
engines/

https://github.com/RadhiFadlillah/go-regex-benchmark
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/

Thank you!

