
Soujanya Namburi
Senior Security Research Engineer -

Harness io

Improving Regular Expressions

Regex Before

● PCRE, Perl, Java regex
● Backtracking
● Legacy WAFs, grep-like tools
● NFAs

Regexes now

● RE2, Hyperscan, Rust, RE-flex
● Subset DFA-compatible only)
● WAFs, DPI, high-perf matching

How PCRE works

● Execution: Recursive backtracking
● To match, PCRE tries paths depth-first, trying alternatives sequentially
● If one path fails, it backtracks to try other branches
● Backreferences and advanced features make the automaton

nondeterministic beyond classical NFAs

How RE2 works

● Regex → DFA/NFA without backtracking
● RE2 converts regex to an optimized Deterministic Finite Automaton

DFA) or sometimes a hybrid with NFA
● It expands all nondeterminism upfront by computing sets of NFA

states (powerset construction)
● No backtracking is involved during matching

REDOS!

● Relies on backtracking regex engines (e.g., PCRE
● Malicious input forces the engine to explore exponential possibilities
● WAF or backend becomes unresponsive or crashes
● Bad regex:

○ “.*only.*ˮ

REDOS!

● ^(a)$
○ [a][a][a][a]
○ [a][a][aa]
○ [a][aa][a]
○ [aa][a][a]
○ [a][aaa]
○ [aa][aa]
○ [aaa][a]
○ [aaaa]
○ ….

Better regex

● Reduce ambiguity - (abc|a) → a(bc)?
● Avoid ambiguous branches, (a|aa)*)
● Try to use anchors if possible
● Avoid (a|b|c) → use [abc]
● Avoid Nested Quantifiers: (a+)+ → aa*b

What IDFs did before

● popular IDSes like Snort and Suricata do a prefilter based regex
○ Specify a string pattern per regex
○ Find words
○ Run if found

Optimisations

● JIT
● Use the prefiltering as part of the regex match

○ Compiles all your regular expressions into a single, unified
automaton.

○ Converts regex patterns into hybrid automata combining:
■ Deterministic Finite Automata DFA
■ Nondeterministic Finite Automata NFA
■ Bit-parallel SIMD) engines

○ /FA_n str_n FA_{n-1} str_{n-1} ... str_2 FA_1 str_1 FA_0/

Why can’t we use it?

● Designed for hundreds or thousands of simultaneous patterns (e.g.,
IDS, WAF

● Rewrite the architecture for it to work on 30 percent of the machines
● Needs CPU SIMD support and sufficient memory

The future

● Fully adaptable engine
● https://github.com/RadhiFadlillah/go-regex-benchmark
● https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-

engines/

https://github.com/RadhiFadlillah/go-regex-benchmark
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/

Thank you!

